Article ID Journal Published Year Pages File Type
4927349 Soil Dynamics and Earthquake Engineering 2017 10 Pages PDF
Abstract
In this paper, a numerical approach for the pushover analysis of masonry towers, having hollow arbitrary sections, is proposed. Masonry is considered a nonlinear softening material in compression and brittle in tension. The tower, modeled in the framework of the Euler-Bernoulli beam theory, is subjected to a predefined load distribution, but the problem is formulated as a displacement controlled analysis in order to follow the post peak descending branch of the structural response. Nonlinear geometric effects and nonlinear constraints (the latter due to surrounding buildings) are also considered. Benchmarking pushover analyses are performed with the commercial code Abaqus in relation to a real case (the Gabbia Tower in Mantua), which proved the accuracy and reliability of the results obtained with the present formulation and the noteworthy reduction of computing time.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,