Article ID Journal Published Year Pages File Type
4928367 Thin-Walled Structures 2017 12 Pages PDF
Abstract
In this paper, the free vibration analysis of rectangular plates composed of functionally graded materials with porosities is investigated based on a simple first-order shear deformation plate theory. The network of pores in assumed to be empty or filled by low pressure air and the material properties of the plate varies through the thickness. Using Hamilton's principle and utilizing the variational method, the governing equations of motion of FG plates with porosities are derived. Considering two boundary layer functions, the governing equations of the system are rewritten and decoupled. Finally, two decoupled equations are solved analytically for Lévy-type boundary conditions so as to obtain the eigenfrequencies of the plate. The effects of porosity parameter, power law index, thickness-side ratio, aspect ratio, porosity distribution and boundary conditions on natural frequencies of the plate are investigated in detail.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,