Article ID Journal Published Year Pages File Type
493274 Procedia Technology 2012 8 Pages PDF
Abstract

In this paper, we propose, a novel DBSCAN method to cluster the gene expression data. The main problem of DBSCAN is its quadratic computational complexity. We resolve this drawback by using the prototypes produced from a squared error clustering method such as K-means. Then, the DBSCAN technique is applied efficiently using these prototypes. In our algorithm, during the iterations of DBSCAN, if a point from an uncovered prototype is assigned to a cluster, then all the other points of such prototype belongs to the same cluster. We have carried out excessive experiments on various two dimensional artificial and multi-dimensional biological data. The proposed technique is compared with few existing techniques. It is observed that proposed algorithm outperforms the existing methods.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)