Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4935157 | Schizophrenia Research | 2016 | 12 Pages |
Abstract
Twenty years have passed since the dysconnection hypothesis was first proposed (Friston and Frith, 1995; Weinberger, 1993). In that time, neuroscience has witnessed tremendous advances: we now live in a world of non-invasive neuroanatomy, computational neuroimaging and the Bayesian brain. The genomics era has come and gone. Connectomics and large-scale neuroinformatics initiatives are emerging everywhere. So where is the dysconnection hypothesis now? This article considers how the notion of schizophrenia as a dysconnection syndrome has developed - and how it has been enriched by recent advances in clinical neuroscience. In particular, we examine the dysconnection hypothesis in the context of (i) theoretical neurobiology and computational psychiatry; (ii) the empirical insights afforded by neuroimaging and associated connectomics - and (iii) how bottom-up (molecular biology and genetics) and top-down (systems biology) perspectives are converging on the mechanisms and nature of dysconnections in schizophrenia.
Related Topics
Life Sciences
Neuroscience
Behavioral Neuroscience
Authors
Karl Friston, Harriet R. Brown, Jakob Siemerkus, Klaas E. Stephan,