Article ID Journal Published Year Pages File Type
493596 Simulation Modelling Practice and Theory 2014 15 Pages PDF
Abstract

High-Variety, Low-Volume (HVLV) manufacturing systems are built to produce parts of several types in small quantities and under multiple production objectives. They relate to job-shop systems well known by researchers. One of the most studied assumptions of HVLV systems scheduling is considering that machines may be periodically unavailable during the production scheduling. This article deals with an analytical integrating method using (max, +) algebra to model HVLV scheduling problems subject to preventive maintenance (PM) while considering machines availability constraints. Each machine is subject to PM while maintaining flexibility for the start time of the maintenance activities during the planning period. The proposed model controls the placement of maintenance activities along the production operations. Indeed, the sequencing of maintenance activities on the machines depends on the criteria to minimize and may be different for each criteria value. For preventive maintenance, the proposed model aims to generate the best sequencing between activities while respecting the planning program that satisfy the optimal criteria values. In order to illustrate the performance of the proposed methodology, a simulation example is given.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,