Article ID Journal Published Year Pages File Type
4937702 Computers in Human Behavior 2017 6 Pages PDF
Abstract
We address the problem of aggregating binary signals from physiological sensors and eye tracking to predict a driver's visual perception of scene hazards. In the absence of ground truth, it is crucial to use an aggregation scheme that estimates the reliability of each signal source and thus reliably aggregates signals to predict whether an object has been perceived. To this end, we apply state-of-the-art methods for response aggregation on data obtained from simulated driving sessions with 30 subjects. Our results show that a probabilistic aggregation scheme on top of an Expectation-Maximization-based estimation of source reliabilities can predict hazard perception at a recall and precision of 96% in real-time.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,