Article ID Journal Published Year Pages File Type
494110 Swarm and Evolutionary Computation 2014 10 Pages PDF
Abstract

The 0–1 multidimensional knapsack problem (MKP) arises in many fields of optimization and is NP-hard. Several exact as well as heuristic methods exist. Recently, an artificial fish swarm algorithm has been developed in continuous global optimization. The algorithm uses a population of points in space to represent the position of fish in the school. In this paper, a binary version of the artificial fish swarm algorithm is proposed for solving the 0–1 MKP. In the proposed method, a point is represented by a binary string of 0/1 bits. Each bit of a trial point is generated by copying the corresponding bit from the current point or from some other specified point, with equal probability. Occasionally, some randomly chosen bits of a selected point are changed from 0 to 1, or 1 to 0, with an user defined probability. The infeasible solutions are made feasible by a decoding algorithm. A simple heuristic add_item is implemented to each feasible point aiming to improve the quality of that solution. A periodic reinitialization of the population greatly improves the quality of the solutions obtained by the algorithm. The proposed method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method gives a competitive performance when solving this kind of problems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,