Article ID Journal Published Year Pages File Type
4942067 Artificial Intelligence 2017 67 Pages PDF
Abstract
We propose relational linear programming, a simple framework for combining linear programs (LPs) and logic programs. A relational linear program (RLP) is a declarative LP template defining the objective and the constraints through the logical concepts of objects, relations, and quantified variables. This allows one to express the LP objective and constraints relationally for a varying number of individuals and relations among them without enumerating them. Together with a logical knowledge base, effectively a logic program consisting of logical facts and rules, it induces a ground LP. This ground LP is solved using lifted linear programming. That is, symmetries within the ground LP are employed to reduce its dimensionality, if possible, and the reduced program is solved using any off-the-shelf LP solver. In contrast to mainstream LP template languages such as AMPL, which features a mixture of declarative and imperative programming styles, RLP's relational nature allows a more intuitive representation of optimization problems, in particular over relational domains. We illustrate this empirically by experiments on approximate inference in Markov logic networks using LP relaxations, on solving Markov decision processes, and on collective inference using LP support vector machines.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,