Article ID Journal Published Year Pages File Type
4942170 Artificial Intelligence 2016 67 Pages PDF
Abstract
To address these limitations of existing models, this article provides three main contributions. Our first contribution is a new human behavior model, SHARP, which mitigates these three limitations as follows: (i) SHARP reasons based on success or failure of the adversary's past actions on exposed portions of the attack surface to model adversary adaptivity; (ii) SHARP reasons about similarity between exposed and unexposed areas of the attack surface, and also incorporates a discounting parameter to mitigate adversary's lack of exposure to enough of the attack surface; and (iii) SHARP integrates a non-linear probability weighting function to capture the adversary's true weighting of probability. Our second contribution is a first “repeated measures study” - at least in the context of SSGs - of competing human behavior models. This study, where each experiment lasted a period of multiple weeks with individual sets of human subjects on the Amazon Mechanical Turk platform, illustrates the strengths and weaknesses of different models and shows the advantages of SHARP. Our third major contribution is to demonstrate SHARP's superiority by conducting real-world human subjects experiments at the Bukit Barisan Seletan National Park in Indonesia against wildlife security experts.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , ,