Article ID Journal Published Year Pages File Type
4942579 Engineering Applications of Artificial Intelligence 2017 11 Pages PDF
Abstract
In this paper, a recurrent neural network coupled with Kalman filter is proposed to identify dynamic terms of robotic manipulator. By cooperating some inherent characteristics of robot, this network has the capability to individually identify nonlinear terms using Weighted Augmentation Error (WAE). To present the infrastructure of architecture, an adaptive scheme based on the conventional Back Propagation (BP) is firstly driven using the Gradient Descent (GD) method. Additionally, a stable adaptive updating rule is extracted from the discrete time Lyapunov candidate as an approach for the general nonlinear system identification. Then, this approach is applied to the predefined network. To experimentally validate the computational efficiency and control applicability of the proposed method, Adaptive Neural Network Based Inverse Dynamic Control (ANN-Based-IDC) is employed on a laboratory-scaled twin-rotor CE-150 helicopter. This experiment illustrates enhancement of steady-state performance from 2-to-3 times more in compared with simple PID. Moreover, disturbance rejection and robustness tests admit capability of the method for online dynamic identification in the presence of output and dynamic perturbation.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,