Article ID Journal Published Year Pages File Type
4943058 Expert Systems with Applications 2017 11 Pages PDF
Abstract
A fall is an abnormal activity that occurs rarely, so it is hard to collect real data for falls. It is, therefore, difficult to use supervised learning methods to automatically detect falls. Another challenge in automatically detecting falls is the choice of engineered features. In this paper, we formulate fall detection as an anomaly detection problem and propose to use an ensemble of autoencoders to learn features from different channels of wearable sensor data trained only on normal activities. We show that the traditional approach of choosing a threshold as the maximum of the reconstruction error on the training normal data is not the right way to identify unseen falls. We propose two methods for automatic tightening of reconstruction error from only the normal activities for better identification of unseen falls. We present our results on two activity recognition datasets and show the efficacy of our proposed method against traditional autoencoder models and two standard one-class classification methods.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,