Article ID Journal Published Year Pages File Type
4943386 Expert Systems with Applications 2017 20 Pages PDF
Abstract
Feature subset selection with the aim of reducing dependency of feature selection techniques and obtaining a high-quality minimal feature subset from a real-world domain is the main task of this research. For this end, firstly, two types of feature representation are presented for feature sets, namely unigram-based and part-of-speech based feature sets. Secondly, five methods of feature ranking are employed for creating feature vectors. Finally, we propose two methods for the integration feature vectors and feature subsets. An ordinal-based integration of different feature vectors (OIFV) is proposed in order to obtain a new feature vector. The new feature vector depends on the order of features in the old vectors. A frequency-based integration of different feature subsets (FIFS) with most effective features, which are obtained from a hybrid filter and wrapper methods in the feature selection task, is then proposed. In addition, four well-known text classification algorithms are employed as classifiers in the wrapper method for the selection of the feature subsets. A wide range of comparative experiments on five widely-used datasets in sentiment analysis were carried out. The experiments demonstrate that proposed methods can effectively improve the performance of sentiment classification. These results also show that proposed part-of-speech patterns are more effective in their classification accuracy compared to unigram-based features.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,