Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4943394 | Expert Systems with Applications | 2017 | 10 Pages |
Abstract
Activity recognition has been a hot topic for decades, from the scientific research to the development of off-the-shelf commercial products. Since people perform the activities differently, to avoid overfitting, building a general model with activity data of various users is required before the deployment for personal use. However, annotating a large amount of activity data is expensive and time-consuming. In this paper, we build a general model for activity recognition with a limited amount of labelled data. We combine Latent Dirichlet Allocation (LDA) and AdaBoost to jointly train a general activity model with partially labelled data. After that, when AdaBoost is used for online prediction, we combine it with graphical models (such as HMM and CRF) to exploit the temporal information in human activities to smooth out the accidental misclassifications. Experiments with publicly available datasets show that we are able to obtain the accuracy of more than 90% with 1% labelled data.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Jiahui Wen, Zhiying Wang,