Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4943425 | Expert Systems with Applications | 2017 | 11 Pages |
Abstract
Extractive summarization aims to automatically produce a short summary of a document by concatenating several sentences taken exactly from the original material. Due to its simplicity and easy-to-use, the extractive summarization methods have become the dominant paradigm in the realm of text summarization. In this paper, we address the sentence scoring technique, a key step of the extractive summarization. Specifically, we propose a novel word-sentence co-ranking model named CoRank, which combines the word-sentence relationship with the graph-based unsupervised ranking model. CoRank is quite concise in the view of matrix operations, and its convergence can be theoretically guaranteed. Moreover, a redundancy elimination technique is presented as a supplement to CoRank, so that the quality of automatic summarization can be further enhanced. As a result, CoRank can serve as an important building-block of the intelligent summarization systems. Experimental results on two real-life datasets including nearly 600 documents demonstrate the effectiveness of the proposed methods.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Changjian Fang, Dejun Mu, Zhenghong Deng, Zhiang Wu,