Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4943490 | Expert Systems with Applications | 2017 | 36 Pages |
Abstract
Recommender systems try to predict the preferences of users for specific items, based on an analysis of previous consumer preferences. In this paper, we propose SCoR, a Synthetic Coordinate based Recommendation system which is shown to outperform the most popular algorithmic techniques in the field, approaches like matrix factorization and collaborative filtering. SCoR assigns synthetic coordinates to nodes (users and items), so that the distance between a user and an item provides an accurate prediction of the user's preference for that item. The proposed framework has several benefits. It is parameter free, thus requiring no fine tuning to achieve high performance, and is more resistance to the cold-start problem compared to other algorithms. Furthermore, it provides important annotations of the dataset, such as the physical detection of users and items with common and unique characteristics as well as the identification of outliers. SCoR is compared against nine other state-of-the-art recommender systems, sever of them based on the well known matrix factorization and two on collaborative filtering. The comparison is performed against four real datasets, including a brief version of the dataset used in the well known Netflix challenge. The extensive experiments prove that SCoR outperforms previous techniques while demonstrating its improved stability and high performance.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Harris Papadakis, Costas Panagiotakis, Paraskevi Fragopoulou,