Article ID Journal Published Year Pages File Type
4943499 Expert Systems with Applications 2017 37 Pages PDF
Abstract
Flower pollination algorithm (FPA) is a recent addition to the field of nature inspired computing. The algorithm has been inspired from the pollination process in flowers and has been applied to a large spectra of optimization problems. But it has certain drawbacks which prevents its applications as a standard algorithm. This paper proposes new variants of FPA employing new mutation operators, dynamic switching and improved local search. A comprehensive comparison of proposed algorithms has been done for different population sizes for optimizing seventeen benchmark problems. The best variant among these is adaptive-Lévy flower pollination algorithm (ALFPA) which has been further compared with the well-known algorithms like artificial bee colony (ABC), differential evolution (DE), firefly algorithm (FA), bat algorithm (BA) and grey wolf optimizer (GWO). Numerical results show that ALFPA gives superior performance for standard benchmark functions. The algorithm has also been subjected to statistical tests and again the performance is better than the other algorithms.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,