Article ID Journal Published Year Pages File Type
4944617 Information Sciences 2017 25 Pages PDF
Abstract
Firefly algorithm (FA) is a new optimization technique based on swarm intelligence. It simulates the social behavior of fireflies. The search pattern of FA is determined by the attractions among fireflies, whereby a less bright firefly moves toward a brighter firefly. In FA, each firefly can be attracted by all other brighter fireflies in the population. However, too many attractions may result in oscillations during the search process and high computational time complexity. To overcome these problems, we propose a new FA variant called FA with neighborhood attraction (NaFA). In NaFA, each firefly is attracted by other brighter fireflies selected from a predefined neighborhood rather than those from the entire population. Experiments are conducted using several well-known benchmark functions. The results show that the proposed strategy can efficiently improve the accuracy of solutions and reduce the computational time complexity.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , ,