Article ID Journal Published Year Pages File Type
4945045 Information Systems 2017 18 Pages PDF
Abstract
Consider a database consisting of a set of tuples, each of which contains an interval, a type and a weight. These tuples are called typed intervals and used to support applications involving diverse intervals. In this paper, we study top-k queries on typed intervals. The query reports k intervals intersecting the query time, containing a particular type and having the largest weight. The query time can be a point or an interval. Further, we define top-k continuous queries that return qualified intervals at each time point during the query interval. To efficiently answer such queries, a key challenge is to build an index structure to manage typed intervals. Employing the standard interval tree, we build the structure in a compact way to reduce the I/O cost, and provide analytically derived partitioning methods to manage the data. Query algorithms are proposed to support point, interval and continuous queries. An auxiliary main-memory structure is developed to report continuous results. Using large real and synthetic datasets, extensive experiments are performed in a prototype database system to demonstrate the effectiveness, efficiency and scalability. The results show that our method significantly outperforms alternative methods in most settings.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,