Article ID Journal Published Year Pages File Type
4945624 International Journal of Electrical Power & Energy Systems 2017 11 Pages PDF
Abstract
Top-down power system restoration following a widespread blackout begins with energization of the backbone transmission network. All interconnected regions will be restored as a whole, which needs collaboration of multiple operators. The parallel control and integrated restoration planning issues have to be addressed. In order to conduct an efficient top-down restoration process and guarantee the operational security, a hierarchical coordination mechanism and an online decision support system-based self-healing approach are proposed. Considering the multiple decision-making problems involved, an associated bi-level optimization model is built, which integrates the planning problems of backbone reconfiguration, sub-transmission system restoration, and non-black-start units start-up. Then, a solution methodology is developed to provide online decisions based on the model. Simulation results of Shandong Power System in China show that the restoration performance is significantly improved using the proposed control approach. Additionally, the decision method is proved to be efficient enough for online applications.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,