Article ID Journal Published Year Pages File Type
4945824 International Journal of Human-Computer Studies 2017 26 Pages PDF
Abstract
We focus on the problem of contributor-task matching in mobile crowd-sourcing. The idea is to identify existing social media users who possess domain expertise (e.g., photography) and incentivize them to perform some tasks (e.g., take quality pictures). To this end, we propose a framework that extracts the potential contributors' expertise based on their social media activity and determines incentives for them within the constraint of a budget. This framework does so by preferentially targeting contributors who are likely to offer quality content. We evaluate our framework on Flickr data for the entire city of Barcelona and show that it ensures high levels of task quality and wide geographic coverage, all without compromising fairness.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , ,