Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4946378 | Knowledge-Based Systems | 2017 | 13 Pages |
Abstract
The krill herd (KH) is an innovative biologically-inspired algorithm. To improve the solution quality and to quicken the global convergence speed of KH, an ameliorated krill herd algorithm (A-KH) is proposed to solve the aforementioned problems and test it by classical benchmark functions, which is one of the major contributions of this paper. Compared with other several state-of-art optimization algorithms (biogeography-based optimization, particle swarm optimization, artificial bee colony and krill herd algorithm), A-KH shows better search performance. There is, furthermore, another contribution that the A-KH is adopted to adjust the parameters of the fast learning network (FLN) so as to build the turbine heat rate model of a 600MW supercritical steam and obtain a high-precision prediction model. Experimental results show that, compared with other several turbine heat rate models, the tuned FLN model by A-KH has better regression precision and generalization capability.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Niu Peifeng, Chen Ke, Ma Yunpeng, Li Xia, Liu Aling, Li Guoqiang,