Article ID Journal Published Year Pages File Type
4948654 Robotics and Autonomous Systems 2017 13 Pages PDF
Abstract
This paper proposes a wearable walking control interface and an electric stimulation pattern for a paraplegic patient wearing a powered exoskeleton. The wearable interface allows the paraplegic patient to voluntarily control their own stride while they walk with the aid of an exoskeleton. The electric stimulation equipment provides the wearer with tactile feedback regarding their foot position. For security reasons, a humanoid walking robot was used to replace the patient during the experiments. The robot simulates a paraplegic patient that walks with the aid of an exoskeleton. A series of robot walking experiments were implemented to validate the feasibility of the wearable walking control interface and to evaluate the contribution of the electric stimulation pattern. The experiments to confirm the effectiveness of electric stimulation were implemented under three feedback conditions: visual feedback, electric stimulation feedback, and no feedback. The experimental results indicate that the wearable walking controller enables an operator to voluntarily control their stride while walking. The experimental results also indicate that the electric stimulation provides helpful information to assist in walking at nearly the same level as visual feedback.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,