Article ID Journal Published Year Pages File Type
4948843 Robotics and Autonomous Systems 2017 10 Pages PDF
Abstract
This paper introduces a novel motion planning algorithm for stochastic dynamic scenarios. We apply a Probability Navigation Function (PNF), discussed in the authors' previous research work, to dynamic environments. We first consider the ambient configuration space to be an n- dimensional ball; the robot and the obstacles loci are all known with a Gaussian probability distribution, and both the robot and the obstacles are assumed to have n-dimensional disc shapes. We fuse the geometries of the robot and the obstacles with the localization probability distribution using convolution. We then define a Probability Navigation Function (PNF) φ from the configuration space to R. We also provide a numerical method for the case where the obstacles and the robot shapes are non-symmetric and their probability distributions are non-Gaussian respectively. The PNF is applied to the dynamic case, where the obstacles are moving at different velocities, by calculating consecutive probability navigation functions according to a prediction of the obstacles' positions and their estimation error covariance. We then apply a simulated annealing scheme on the sequence of motion directions to choose an optimal path. We demonstrate our algorithm for various scenarios.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,