Article ID Journal Published Year Pages File Type
4949253 Computational Statistics & Data Analysis 2017 14 Pages PDF
Abstract
It is well known that when the dimension of the data becomes very large, the sample covariance matrix S will not be a good estimator of the population covariance matrix Σ. Using such estimator, one typical consequence is that the estimated eigenvalues from S will be distorted. Many existing methods tried to solve the problem, and examples of which include regularizing Σ by thresholding or banding. In this paper, we estimate Σ by maximizing the likelihood using a new penalization on the matrix logarithm of Σ (denoted by A) of the form: ‖A−mI‖F2=∑i(log(di)−m)2, where di is the ith eigenvalue of Σ. This penalty aims at shrinking the estimated eigenvalues of A toward the mean eigenvalue m. The merits of our method are that it guarantees Σ to be non-negative definite and is computational efficient. The simulation study and applications on portfolio optimization and classification of genomic data show that the proposed method outperforms existing methods.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,