Article ID Journal Published Year Pages File Type
4949490 Discrete Applied Mathematics 2017 11 Pages PDF
Abstract
In 1965, Jack Edmonds proposed his celebrated polynomial-time algorithm to find a maximum matching in a graph. It is well-known that finding a maximum matching in G is equivalent to finding a maximum independent set in the line graph of G. For general graphs, the maximum independent set problem is NP-hard. What makes this problem easy in the class of line graphs and what other restrictions can lead to an efficient solution of the problem? In the present paper, we analyse these and related questions. We also review various techniques that may lead to efficient algorithms for the maximum independent set problem in restricted graph families, with a focus given to augmenting graphs and graph transformations. Both techniques have been used in the solution of Edmonds to the maximum matching problem, i.e. in the solution to the maximum independent set problem in the class of line graphs. We survey various results that exploit these techniques beyond the line graphs.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,