Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4949925 | Discrete Applied Mathematics | 2016 | 8 Pages |
Abstract
We use the well-known Maiorana-McFarland class to construct several important combinatorial structures. In the first place, we easily identify infinite classes of vectorial plateaued functions {F}:F2nâF2n such that all non-zero linear combinations of its component functions are also plateaued. More importantly, by setting certain restrictions on the component functions, the same approach also yields many infinite classes of permutations for any nâ¥6. Finally, we deduce some infinite classes of complete permutations, as a subclass of these permutations. Most notably, all these classes are of variable and controllable degree, the property being intrinsic to the construction method. The construction method is highly tweakable giving rise to many variations that again provide us with infinite classes of these structures.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
E. Pasalic, N. Cepak, Y. Wei,