Article ID Journal Published Year Pages File Type
4950366 Future Generation Computer Systems 2017 25 Pages PDF
Abstract
With the rapid development of cloud computing, how to reduce energy consumption as well as maintain high computation capacity has become a timely and important challenge. Existing Virtual Machines (VMs) scheduling schemes have mainly focused on enhancing the cluster resource utilization and reducing power consumption by improving the legacy “bin-packing” algorithm. However, different resource-intensive applications running on VMs in realistic scenarios have significant effects on the system performance and energy consumption. Furthermore, instantaneous peak loads may lead to a scheduling error, which can significantly impede the energy efficiency of scheduling algorithms. In this paper, we propose a new scheduling approach named PreAntPolicy that consists of a prediction model based on fractal mathematics and a scheduler on the basis of an improved ant colony algorithm. The prediction model determines whether to trigger the execution of the scheduler by virtue of load trend prediction, and the scheduler is responsible for resource scheduling while minimizing energy consumption under the premise of guaranteeing the Quality-of-Service (QoS). Through extensive analysis and simulation experiments using real workload traces from the compute clusters of Google, the performance results demonstrate that the proposed approach exhibits excellent energy efficiency and resource utilization. Moreover, this approach offers an effective dynamic capacity provisioning model for resource-intensive applications in a heterogeneous computing environment and can reduce the consumption of system resources and energy when scheduling is triggered by instantaneous peak loads.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,