Article ID Journal Published Year Pages File Type
4950424 Future Generation Computer Systems 2017 28 Pages PDF
Abstract
Executing time critical applications within cloud environments while satisfying execution deadlines and response time requirements is challenging due to the difficulty of securing guaranteed performance from the underlying virtual infrastructure. Cost-effective solutions for hosting such applications in the Cloud require careful selection of cloud resources and efficient scheduling of individual tasks. Existing solutions for provisioning infrastructures for time constrained applications are typically based on a single global deadline. Many time critical applications however have multiple internal time constraints when responding to new input. In this paper we propose a cloud infrastructure planning algorithm that accounts for multiple overlapping internal deadlines on sets of tasks within an application workflow. In order to better compare with existing work, we adapted the IC-PCP algorithm and then compared it with our own algorithm using a large set of workflows generated at different scales with different execution profiles and deadlines. Our results show that the proposed algorithm can satisfy all overlapping deadline constraints where possible given the resources available, and do so with consistently lower host cost in comparison with IC-PCP.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , , , ,