Article ID Journal Published Year Pages File Type
4950759 Information and Computation 2016 12 Pages PDF
Abstract
We show that all n-qubit entangled states, with the exception of tensor products of single-qubit and bipartite maximally-entangled states, admit Hardy-type proofs of non-locality without inequalities or probabilities. More precisely, we show that for all such states, there are local, one-qubit observables such that the resulting probability tables are logically contextual in the sense of Abramsky and Brandenburger, this being the general form of the Hardy-type property. Moreover, our proof is constructive: given a state, we show how to produce the witnessing local observables. In fact, we give an algorithm to do this. Although the algorithm is reasonably straightforward, its proof of correctness is non-trivial. A further striking feature is that we show that n+2 local observables suffice to witness the logical contextuality of any n-qubit state: two each for two for the parties, and one each for the remaining n−2 parties.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,