Article ID Journal Published Year Pages File Type
4950985 Journal of Computational Science 2017 41 Pages PDF
Abstract
Functionally graded materials often operate in high temperature environment, and have been extensively used in a variety of engineering applications including nuclear power plant and spacecraft. In this paper, we present new numerical results of mechanical behavior for functionally graded sandwich plates in high temperature. We investigate material combinations and stress distribution of sandwich plates with FGM faces. One interesting physical point is captured. It shows that not all sandwich FGM plates possess similar mechanical behavior and performance in high temperature. We address the importance of material combinations, which significantly affect the mechanical behavior of resulting sandwich plates. The transition point in the mechanical response is found, which only occurs to some particular material combinations. All numerical results are calculated by a finite element model with selective reduced numerical integration based on the first-order shear deformation theory. A parametric study is also carried out to demonstrate the impact of severe high temperature on the mechanical behavior of sandwich plates.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , ,