Article ID Journal Published Year Pages File Type
4951193 Journal of Computer and System Sciences 2017 17 Pages PDF
Abstract
In this paper, we present a framework for resource management of Streaming Data Analytics Flows (SDAF). Using advanced techniques in control and optimization theory, we design an adaptive control system tailored to the data ingestion, analytics, and storage layers of the SDAF that is able to continuously detect and self-adapt to workload changes for meeting the users' service level objectives. Our experiments based on a real-world SDAF show that, the proposed control scheme is able to reduce the deviation from desired utilization of resources by up to 48% compared to existing techniques.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,