Article ID Journal Published Year Pages File Type
4952200 Theoretical Computer Science 2017 7 Pages PDF
Abstract
A 1-plane graph is a graph embedded in the plane such that each edge is crossed at most once. A 1-plane graph is optimal if it has maximum edge density. A red-blue edge coloring of an optimal 1-plane graph G partitions the edge set of G into blue edges and red edges such that no two blue edges cross each other and no two red edges cross each other. We prove the following: (i) Every optimal 1-plane graph has a red-blue edge coloring such that the blue subgraph is maximal planar while the red subgraph has vertex degree at most four; this bound on the vertex degree is worst-case optimal. (ii) A red-blue edge coloring may not always induce a red forest of bounded vertex degree. Applications of these results to graph augmentation and graph drawing are also discussed.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,