Article ID Journal Published Year Pages File Type
4952243 Theoretical Computer Science 2017 42 Pages PDF
Abstract
We first introduce a new cryptographic primitive called self-updatable encryption (SUE), realizing a time-evolution mechanism. In SUE, a ciphertext and a private key are associated with time. A user can decrypt a ciphertext if its time is earlier than that of his private key. Additionally, anyone (e.g., a cloud server) can update the ciphertext to a ciphertext with a newer time. We also construct an SUE scheme and prove its full security under static assumptions. Following our modular approach, we present a new RS-ABE scheme with shorter ciphertexts than that of Sahai et al. and prove its security. The length efficiency is mainly due to our SUE scheme and the underlying modularity. We apply our approach to predicate encryption (PE) supporting attribute-hiding property, and obtain a revocable-storage PE (RS-PE) scheme that is selectively-secure. We further demonstrate that SUE is of independent interest, by showing it can be used for timed-release encryption (and its applications), and for augmenting key-insulated encryption with forward-secure storage.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , ,