Article ID Journal Published Year Pages File Type
4952486 Theoretical Computer Science 2016 13 Pages PDF
Abstract
Monte Carlo tree search (MCTS) has been successfully applied to many games recently. Since then, many techniques are used to improve the strength of MCTS-based programs. This paper investigates four recent techniques: early playout terminations, implicit minimax backups, quality-based rewards and progressive bias. The strength improvements are analyzed by incorporating the techniques into an MCTS-based program, named DarkKnight, for Chinese Dark Chess. Experimental results showed that the win rates against the original DarkKnight were 60.75%, 71.85%, 59.00%, and 82.10%, respectively for incorporating the four techniques. The results indicated that the improvement by progressive bias was most significant. By incorporating all together, a better win rate of 84.75% was obtained.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , ,