Article ID Journal Published Year Pages File Type
4953693 Ad Hoc Networks 2016 14 Pages PDF
Abstract
Recent advances in Unmanned Aerial Vehicle (UAV) technologies have enhanced Wireless Sensor Networks (WSNs) by offering a UAV as a mobile data gathering node. These systems are called WSN-UAV that are well-suited for remote monitoring and emergency applications. Since previous Medium Access Control (MAC) protocols proposed in WSNs are not appropriate in the presence of a UAV, few researches have proposed new MAC protocols to meet WSN-UAV requirements. MAC protocols of WSN-UAV should be extremely efficient and fair due to the time-limited presence of the UAV in the neighborhood of each sensor. However, issues such as high throughput in dense networks, fairness among sensors, and efficiency have not been resolved yet in a satisfactory manner. Moreover, previous works lack analytical evaluation of their protocols. In this paper, we present a novel MAC protocol in WSN-UAV, called Advanced Prioritized MAC (AP-MAC), that can provide high throughput, fairness, and efficiency, especially in dense networks. We also analytically evaluate AP-MAC using a 3-dimensional Markov chain and validate its correctness using simulation. Simulation results under various scenarios confirm that AP-MAC can approximately improve throughput and fairness up to 20% and 25%, respectively, leading to higher efficiency compared with previous work in WSN-UAV systems such as Prioritized Frame Selection (PFS).
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,