Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4955907 | Journal of Network and Computer Applications | 2017 | 29 Pages |
Abstract
This study constructs an approach to reproduce the real-time falls of humans, which uses a triaxial accelerometer and triaxial gyroscope to detect the occurrence of a fall, and an attitude algorithm to estimate the angles of each part of the human body, where Internet of healthcare things collects the information of each sensor, and a Bayesian Network deduces the next action. Inferential Bayesian probability could present more complete data of a fall to healthcare providers. Even if the data are damaged by the transmission network or equipment, the next action still could be deduced by Bayesian probability, and because the fall could be reproduced in a 3D Model on the client side, the fall occurrence is shown more intuitively, and could thus serve as reference for first aid.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Cong Zhang, Chin-Feng Lai, Ying-Hsun Lai, Zhen-Wei Wu, Han-Chieh Chao,