Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4955922 | Journal of Network and Computer Applications | 2017 | 21 Pages |
Abstract
Using Software-Defined Networking (SDN), the flexibility and programmability of networks can be significantly increased through the decoupling of the control and data planes. However, network scale-up in large-scale data centers can rapidly increase the computational complexity of operations such as the shortest path calculation on the network topology or Quality-of-Service (QoS) routing, which, in turn, can cause scalability problems in current SDN controllers. This paper proposes ParaFlow, a multithreaded SDN controller that supports fine-grained parallelism by exploiting application parallelism and utilizing multi-/many-core resources to accelerate event processing. ParaFlow also provides a flow-based programming interface that allows application developers to program with network flows rather than various types of low-level events. Experimental results show that ParaFlow achieves satisfactory performance and scalability in the multithreaded case.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Ping Song, Yi Liu, Chi Liu, Depei Qian,