Article ID Journal Published Year Pages File Type
4956944 Nano Communication Networks 2017 9 Pages PDF
Abstract

Drug delivery is one of the most important applications of molecular communication. Drug transmitters have limited resources in terms of energy and reservoir and these limitations should be taken into consideration when designing a drug delivery system. Drug molecules may also be expensive and releasing a large amount of them can have harmful effects on the healthy parts of the body. In this paper, we consider a multiple transmitter local drug delivery system in which the nearest transmitters to a randomly located tumor are activated to release drug molecules and guarantee the Least Effective Concentration (LEC) in every part of the tumor. We propose two different scenarios: a single transmitter drug delivery system for which the optimal rate of the transmitting nanomachine and the optimal density of deployed nanomachines are derived through formulations and simulations. Poisson distributed as well as regular square and hexagon grid deployments are investigated. We then extend it to a multiple transmitter drug delivery system for which the optimal allocated rate to each releasing transmitter is derived in order to minimize the total rate of release and maintain LEC in every part of the tumor. It is shown that activating multiple transmitters leads to a reduction in the total optimal release rate of drug molecules as well as improving the time duration between consecutive administrations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , , ,