Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4957409 | Pervasive and Mobile Computing | 2017 | 29 Pages |
Abstract
This paper proposes a multi-level feature learning framework for human action recognition using a single body-worn inertial sensor. The framework consists of three phases, respectively designed to analyze signal-based (low-level), components (mid-level) and semantic (high-level) information. Low-level features capture the time and frequency domain property while mid-level representations learn the composition of the action. The Max-margin Latent Pattern Learning (MLPL) method is proposed to learn high-level semantic descriptions of latent action patterns as the output of our framework. The proposed method achieves the state-of-the-art performances, 88.7%, 98.8% and 72.6% (weighted F1 score) respectively, on Skoda, WISDM and OPP datasets.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Yan Xu, Zhengyang Shen, Xin Zhang, Yifan Gao, Shujian Deng, Yipei Wang, Yubo Fan, Eric I-Chao Chang,