Article ID Journal Published Year Pages File Type
4957419 Pervasive and Mobile Computing 2017 15 Pages PDF
Abstract

Smartphone notifications frequently interrupt our daily lives, often at inopportune moments. We propose the decision-on-information-gain model, which extends the existing data collection convention to capture a range of interruptibility behaviour implicitly. Through a six-month in-the-wild study of 11,346 notifications, we find that this approach captures up to 125% more interruptibility cases. Secondly, we find different correlating contextual features for different behaviour using the approach and find that predictive models can be built with >80% precision for most users. However we note discrepancies in performance across labelling, training, and evaluation methods, creating design considerations for future systems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , ,