Article ID Journal Published Year Pages File Type
4957560 Pervasive and Mobile Computing 2016 27 Pages PDF
Abstract
Understanding human mobility patterns is crucial to fields such as urban mobility and mobile network planning. For this purpose, we make use of large-scale datasets recording individuals spatio-temporal locations, from eight major world cities: Beijing, Tokyo, New York, Paris, San Francisco, London, Moscow and Mexico City. Our contributions are two-fold: first, we show significant similarities in people's mobility habits regardless of the city and nature of the dataset. Second, we unveil three persistent traits present in an individual's urban mobility: repetitiveness, preference for shortest-paths, and confinement. These characteristics uncover people's tendency to revisit few favorite venues using the shortest-path available.
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , ,