Article ID Journal Published Year Pages File Type
4958562 Computers & Mathematics with Applications 2017 15 Pages PDF
Abstract
In this paper, a new nonconforming immersed finite element (IFE) method on triangular Cartesian meshes is developed for solving planar elasticity interface problems. The proposed IFE method possesses optimal approximation property for both compressible and nearly incompressible problems. Its degree of freedom is much less than those of existing finite element methods for the same problem. Moreover, the method is robust with respect to the shape of the interface and its location relative to the domain and the underlying mesh. Both theory and numerical experiments are presented to demonstrate the effectiveness of the new method. Theoretically, the unisolvent property and the consistency of the IFE space are proved. Experimentally, extensive numerical examples are given to show that the approximation orders in L2 norm and semi-H1 norm are optimal under various Lamé parameters settings and different interface geometry configurations.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,