Article ID Journal Published Year Pages File Type
4958751 Computers & Mathematics with Applications 2016 10 Pages PDF
Abstract
A fast algorithm that approximates a low rank LU decomposition is presented. In order to achieve a low complexity, the algorithm uses sparse random projections combined with FFT-based random projections. The asymptotic approximation error of the algorithm is analyzed and a theoretical error bound is presented. Finally, numerical examples illustrate that for a similar approximation error, the sparse LU algorithm is faster than recent state-of-the-art methods. The algorithm is completely parallelizable and can fully run on a GPU. The performance is tested on a GPU card showing a significant speed-up improvement in the running time in comparison to a sequential execution.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,