Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
495911 | Applied Soft Computing | 2012 | 17 Pages |
Geometric attack is known as one of the most difficult attacks to resist, for it can desynchronize the location of the watermark and hence causes incorrect watermark detection. It is a challenging work to design a robust image watermarking scheme against geometric attacks. Based on the support vector machine (SVM) and Gaussian–Hermite moments (GHMs), we propose a robust image watermarking algorithm in nonsubsampled contourlet transform (NSCT) domain with good visual quality and reasonable resistance toward geometric attacks in this paper. Firstly, the NSCT is performed on original host image, and corresponding low-pass subband is selected for embedding watermark. Then, the selected low-pass subband is divided into small blocks. Finally, the digital watermark is embedded into host image by modulating adaptively the NSCT coefficients in small block. The main steps of digital watermark detecting procedure include: (1) some low-order Gaussian–Hermite moments of training image are computed, which are regarded as the effective feature vectors; (2) the appropriate kernel function is selected for training, and a SVM training model can be obtained; (3) the watermarked image is corrected with the well trained SVM model; (4) the digital watermark is extracted from the corrected watermarked image. Experimental results show that the proposed image watermarking is not only invisible and robust against common image processing operations such as filtering, noise adding, JPEG compression, etc., but also robust against the geometric attacks.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► To embed adaptively the watermark into the NSCT coefficients block. ► To compute the watermark embedding strength according to the HVS masking. ► To extract the Gaussian–Hermite moments as feature vectors. ► To construct the SVM model for image geometric correction.