Article ID Journal Published Year Pages File Type
4959320 European Journal of Operational Research 2018 32 Pages PDF
Abstract
The shortest loop covering at least one edge of each workcenter in a manufacturing facility layout is an instance of the generalized traveling salesman problem. The optimal solution to this problem is a promising design for non-vehicle-based material handling, typical of most types of conveyors and power-and-free systems, where the length of the path is the main driver of the total investment costs. The loop formulation is usually embedded within a larger problem of the concurrent design of the loop and the input/output stations for vehicle-based material handling typical of automatically guided vehicles and autonomous delivery robots. In these systems, it is not the length, but the total flow of the loaded and empty vehicles that drives the objective function. It has been shown that the shortest loop provides an effective heuristic scheme to achieve prosperous and robust solutions for the concurrent design of the loop and input/output stations. We review and compare covering constraints formulations, provide new insight into connectivity constraints, improve the model formulation and its solution procedure, and report computational results.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,