Article ID Journal Published Year Pages File Type
4959503 European Journal of Operational Research 2017 28 Pages PDF
Abstract
Given a set of items with profits and weights and a knapsack capacity, we study the problem of finding a maximal knapsack packing that minimizes the profit of the selected items. We propose an effective dynamic programming (DP) algorithm which has a pseudo-polynomial time complexity. We demonstrate the equivalence between this problem and the problem of finding a minimal knapsack cover that maximizes the profit of the selected items. In an extensive computational study on a large and diverse set of benchmark instances, we demonstrate that the new DP algorithm outperforms a state-of-the-art commercial mixed-integer programming (MIP) solver applied to the two best performing MIP models from the literature.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,