Article ID Journal Published Year Pages File Type
4960605 Procedia Computer Science 2017 10 Pages PDF
Abstract

A majority of existing biclustering algorithms for microarrays data focus only on extracting biclusters with positive correlations of genes. Nevertheless, biological studies show that a group of biologically significant genes may exhibit negative correlations. In this paper, we propose a new biclustering algorithm, called NBic-ARM (Negative Biclusters using Association Rule Mining). Based on Generic Association Rules, our algorithm identifies negatively-correlated genes. To assess NBic-ARM's performance, we carried out exhaustive experiments on three real-life datasets. Our results prove NBic-ARM's ability to identify statistically and biologically significant biclusters.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,