Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4961606 | Procedia Computer Science | 2016 | 8 Pages |
The theory of usuality suggested by L.A. Zadeh is widely used in many areas including decision analysis, system analysis, control and others where commonsense knowledge plays an important role. As a rule, this knowledge is imprecise, incomplete, and partially reliable. The concept of usuality is characterized by a combination of fuzzy and probabilistic information. Formally, it is handled by possibilistic-probabilistic constraint, where A is a fuzzy restriction on a value of a random variable X, and “usually” is a fuzzy restriction on a value of probability measure of A. Thus, usuality is a special case of a Z-number where second component is “usually”, and is referred to as U-number. Humans mainly use U-numbers in everyday reasoning. As usuality underlies human commonsense reasoning, arithmetic operations on U-numbers should be rather approximate than exact. In this study we develop a new approach to approximate arithmetic and algebraic operations on U-numbers.