Article ID Journal Published Year Pages File Type
4962174 Procedia Computer Science 2016 8 Pages PDF
Abstract

Spatial co-location pattern mining is a sub field of data mining which is used to discover interesting patterns which are expressed as co-location rules. The objects that are frequently located in certain region are expressed as spatial co-locations. It presents a challenge for finding co-location patterns as the traditional data is considered discrete whereas the spatial objects are embedded in a continuous space. For this a join-less approach is proposed, but as the data size increases, a large amount of computation time is devoted to find co-location rules as the approach is purely sequential. We propose a parallelized join-less approach which finds the spatial neighbor relationship in order to identify co-location instances and co-location rules. The proposed work decreases the computation time drastically as it uses a Map-Reduce framework. This paper presents precise and completeness of the new approach. Finally, an experimental evaluations using synthetic data sets show the algorithm is computationally more efficient.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,