Article ID Journal Published Year Pages File Type
4962200 Procedia Computer Science 2016 6 Pages PDF
Abstract

Ubiquitous nature of online social media and ever expending usage of short text messages becomes a potential source of crowd wisdom extraction especially in terms of sentiments therefore sentiment classification and analysis is a significant task of current research purview. Major challenge in this area is to tame the data in terms of noise, relevance, emoticons, folksonomies and slangs. This works is an effort to see the effect of pre-processing on twitter data for the fortification of sentiment classification especially in terms of slang word. The proposed method of pre-processing relies on the bindings of slang words on other coexisting words to check the significance and sentiment translation of the slang word. We have used n-gram to find the bindings and conditional random fields to check the significance of slang word. Experiments were carried out to observe the effect of proposed method on sentiment classification which clearly indicates the improvements in accuracy of classification.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,